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Abstract

A structural-bioinformatics-based computational methodology and framework have been

developed for the design of antibodies to targets of interest. RosettaAntibodyDesign (RAbD)

samples the diverse sequence, structure, and binding space of an antibody to an antigen in

highly customizable protocols for the design of antibodies in a broad range of applications.

The program samples antibody sequences and structures by grafting structures from a

widely accepted set of the canonical clusters of CDRs (North et al., J. Mol. Biol., 406:228–

256, 2011). It then performs sequence design according to amino acid sequence profiles of

each cluster, and samples CDR backbones using a flexible-backbone design protocol incor-

porating cluster-based CDR constraints. Starting from an existing experimental or computa-

tionally modeled antigen-antibody structure, RAbD can be used to redesign a single CDR or

multiple CDRs with loops of different length, conformation, and sequence. We rigorously

benchmarked RAbD on a set of 60 diverse antibody–antigen complexes, using two design

strategies—optimizing total Rosetta energy and optimizing interface energy alone. We uti-

lized two novel metrics for measuring success in computational protein design. The design

risk ratio (DRR) is equal to the frequency of recovery of native CDR lengths and clusters

divided by the frequency of sampling of those features during the Monte Carlo design proce-

dure. Ratios greater than 1.0 indicate that the design process is picking out the native more

frequently than expected from their sampled rate. We achieved DRRs for the non-H3 CDRs

of between 2.4 and 4.0. The antigen risk ratio (ARR) is the ratio of frequencies of the native

amino acid types, CDR lengths, and clusters in the output decoys for simulations performed

in the presence and absence of the antigen. For CDRs, we achieved cluster ARRs as high

as 2.5 for L1 and 1.5 for H2. For sequence design simulations without CDR grafting, the

overall recovery for the native amino acid types for residues that contact the antigen in the

native structures was 72% in simulations performed in the presence of the antigen and 48%

in simulations performed without the antigen, for an ARR of 1.5. For the non-contacting resi-

dues, the ARR was 1.08. This shows that the sequence profiles are able to maintain the

amino acid types of these conserved, buried sites, while recovery of the exposed, contacting
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residues requires the presence of the antigen-antibody interface. We tested RAbD experi-

mentally on both a lambda and kappa antibody–antigen complex, successfully improving

their affinities 10 to 50 fold by replacing individual CDRs of the native antibody with new

CDR lengths and clusters.

Author summary

Antibodies are proteins produced by the immune system to attack infections and cancer

and are also used as drugs to treat cancer and autoimmune diseases. The mechanism that

has evolved to produce them is able to make 10s of millions of different antibodies, each

with a different surface used to bind the foreign or mutated molecule. We have developed

a method to design antibodies computationally, based on the 1000s of experimentally

determined three-dimensional structures of antibodies available. The method works by

treating pieces of these structures as a collection of parts that can be combined in new

ways to make better antibodies. Our method has been implemented in the protein model-

ing program Rosetta, and is called RosettaAntibodyDesign (RAbD). We tested RAbD

both computationally and experimentally. The experimental test shows that we can

improve existing antibodies by 10 to 50 fold, paving the way for design of entirely new

antibodies in the future.

Introduction

Antibodies are a key component of the adaptive immune system and form the basis of its abil-

ity to detect and respond to foreign pathogens through binding of molecular epitopes. Anti-

bodies are increasingly a focus of biomedical research for drug and vaccine development in

addition to their numerous applications in biotechnology by private companies, government,

and academia [1–7]. Experimentally, antibodies may be discovered and optimized through in

vitro phage and yeast display [8,9], screening with large antibody libraries [10–13] and/or

affinity maturation through error-prone PCR [14–16]. They may also be derived in vivo

through a combination of animal immunization and antibody screening through ELISA or

Western blots, and humanization of the animal antibody [17–19].

Although these methods have been successfully applied to create new antibodies, they can

take many months to complete and can be prohibitively expensive. In addition, for many tar-

gets, these methods may not produce antibodies with desirable properties, because the antigen

is difficult to target [20–22] or because the antibody is required to bind to a specific epitope for

various functional reasons such as the neutralization of a target pathogen [23], initialization of

a downstream signaling cascade [24], or the blocking of a binding protein from being able to

engage the site [25]. We believe that computational design methods developed specifically for

antibodies can be used in tandem with state-of-the-art experimental methods to save time,

money, and increase our ability to design or enhance antibodies to many different targets.

Various computational methods including rational, structure-based design, protein design

algorithms, and antibody-specific modeling techniques can aid in the design of antibodies

[26–28]. General protein design methods have been applied to affinity maturation [29–31],

improving stability [32–34], humanization [35,36], and the design of phage/yeast display

libraries [37–40], while three software programs have been developed specifically for antibody

computational design. Maranas and colleagues have developed the OptCDR [41] and

RosettaAntibodyDesign (RAbD)
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OptMAVEn [42] methods, which sample and combine elements of antibody structure in an

effort to assemble antibodies to bind to novel epitopes. OptCDR samples from clusters of the

six CDRs in the presence of a fixed antigen position. This is followed by placement of side

chains according to sequence preferences within each cluster, a rotamer search from a back-

bone-dependent rotamer library [43], and a CHARMM-based energy function. The method

has not been experimentally tested. OptMAVEn divides antibody structures in a manner

inspired by V(D)J recombination: antibody heavy- and light-chain V regions, CDR3s, and

post-CDR3 segments from the MAPS database [44]. OptMAVEn has been tested experimen-

tally and was used to design antibodies against a very hydrophobic heptamer peptide antigen

with a repetitive sequence (FYPYPYA), starting from the structure of an existing antibody

bound to a dodecamer peptide containing this sequence (PDB 4HOH [45]; only the heptamer

has coordinates and was used in the design process) [46].

Lapidoth et al. have presented AbDesign [47] that follows a similar methodology to Opt-

MAVEn, breaking up antibodies into V regions and CDR3 by analogy to V(D)J recombina-

tion. They clustered V region structures purely by length of the CDR1 and CDR2 segments in

VH and VL, grouping sequences from distantly related germlines and different CDR confor-

mations into clusters from which sequence profiles were derived. As implemented in the

Rosetta Software Suite, AbDesign combinatorially builds antibodies and performs sequence

design from position-specific scoring matrices of aligned antibody sequences of their length-

based clusters of the V regions and CDR3 regions. Because CDR1 and CDR2 are grafted

together, AbDesign has limited flexibility in terms of setting which CDRs to design and what

CDR lengths or conformation combinations to sample. The computational benchmarking of

AbDesign consisted of reporting the Cα RMSD from native for each CDR of the top design for

each of 9 antibodies. Only the CDRs with the most common canonical conformations were

reproduced; those with less common conformations were poorly predicted, making it difficult

to evaluate the statistical significance of their results.

AbDesign was used recently to create lead antibodies against insulin and mycobacterial

acyl-carrier protein, which were then synthesized and tested for binding [48]. Three weak

binders were then subjected to random mutagenesis in a yeast-display library screen followed

by manually chosen mutations, which resulted in antibodies with affinity in the 50–100 nM

range. Two residues in the epitope of each of the two ACP-binding antibodies were mutated to

test the designs. Only one of these four reduced binding significantly (by 75%; two others re-

duced binding by 10% and 20%). One mutation from valine to glutamic acid actually increased

binding. Two residues outside the epitope of each of the two ACP designs were also mutated;

three of these mutations increased binding of their respective antibodies 2 to 5 fold and one of

them surprisingly abrogated binding. The equivocal computational benchmarking and experi-

mental results for AbDesign suggest that further development of antibody computational

design is warranted.

Taking advantage of the influx of new structures of antibodies in the PDB, we presented a

new clustering of all CDR structures in the Protein Data Bank (PDB) in 2011, updating the

Chothia classification developed in the 1980s and 1990s [49–52]. Our clustering was per-

formed with a dihedral angle metric and an affinity-propagation clustering algorithm, and was

presented with a systematic nomenclature [53], which is now in common use. From this classi-

fication, we developed the PyIgClassify database [54], which is updated monthly and contains

CDR sequences and cluster identifications for all antibodies in the PDB. PyIgClassify includes

identification of species and IMGT germline V regions [55], and is provided as a relational

database for use in antibody structure prediction and design.

We hypothesized that the clusters in PyIgClassify could form the core of a knowledge-based

approach to antibody design. In this paper, we test this hypothesis through a computational
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benchmark and experimental validation on two separate antibodies. Using the data from PyIg-

Classify, our main approach to design is to graft CDRs from populated clusters onto the anti-

body and to sample the sequence and structure space of that CDR according to the observed

variation in sequence and structure of that cluster in the database. Our goal was to create a flex-

ible, generalized antibody design framework and program that can be applied to numerous

types of antibody design projects from affinity maturation to de novo design.

To create a reliable antibody design framework from our structural bioinformatics efforts,

we leveraged the Rosetta Software Suite [56], a collaborative research project across many

independent labs around the world. Rosetta has been developed and used for a variety of

modeling and design tasks, such as loop modeling [57,58], protein–protein docking [45,59],

structure refinement [60–63], de novo protein design [64], enzyme design [65–67], and inter-

face design [68–70]. Rosetta provides frameworks for sampling and optimizing the conforma-

tions of the backbone and side chains of a protein–protein complex while simultaneously

changing the sequence at specified positions in the interface (in this case, primarily in the

CDRs) in order to optimize the total energy of the system. Alternatively, the program can opti-

mize the interface energy, which is the difference between the energy of the relaxed complex

and the sum of the energies of the separated components after relaxation.

The program and methodology we have developed is called RosettaAntibodyDesign or

RAbD. In this paper, we describe RAbD and both experimental testing and extensive compu-

tational benchmarking. To develop RAbD: (1) we created a database of CDR structures anno-

tated according to our CDR cluster nomenclature and added this database to Rosetta; (2)

implemented user-controlled sampling of CDR structures from this database for antibody

design; (3) developed new grafting methods using the cyclic coordinate descent algorithm [71]

in Rosetta; (4) implemented an algorithm that utilizes sequence profiles for our CDR clusters

for sampling amino acid changes during antibody design and exploits existing structure opti-

mization and Monte Carlo design strategies in Rosetta; and (5) added antibody-specific analy-

sis tools to Rosetta to provide data that can be used in selecting antibody designs for synthesis

and testing. The RAbD Framework consists of around 50 new Rosetta classes and over 20,000

lines of code, all of which is used by the RAbD program and available in RosettaScripts.

A common method for computational benchmarking of protein design methods is the use

of the concept of sequence recovery [72]. Sequence recovery tests how the sequences in the final

design models match the native sequence, calculated as percent sequence identity for all or the

subset of the designable residues. Rosetta’s sequence recovery tends to be in the 35–40% range

for full design of monomeric proteins [73], since many surface positions are tolerant to amino

acid substitution, and the benchmark protocols do not include functional interactions with

other proteins, nucleic acids, or ligands.

However, since our antibody design protocol includes potential changes in the overall

structure of the CDRs by sampling different CDR lengths, clusters, and sequences, the stan-

dard sequence recovery metric is inadequate for testing computational antibody design. We

have therefore expanded the concept of sequence recovery to include recovery of structural

features of the designed antibodies. Although antibodies in the PDB are not likely to be the

highest affinity possible to a given epitope, they bind strongly enough for crystallography.

Thus, maximizing the recovery of CDR lengths, clusters, and sequences is a reasonable strategy

to optimize sampling and scoring strategies for antibody design.

We have developed novel recovery metrics and a way of assessing the statistical significance

of these metrics, which may be used in any protein design scenario. To do this, we borrow a

concept from statistical epidemiology, the Risk Ratio. The Risk Ratio (RR) is defined as the

ratio of two frequencies (or proportions): the frequency of event X in situation A (e.g., disease

progression while taking a drug) and the frequency of event X in situation B (e.g., disease

RosettaAntibodyDesign (RAbD)
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progression with no drug treatment). The Risk Ratio is similar to the odds ratio, which is sim-

ply the ratio of the odds of X to not-X in situation A and the odds of X to not-X in situation B.

However, the interpretation of the odds ratio is often misleading and used incorrectly to inflate

a sense of benefit or risk [74].

For antibody design, we have defined two design metrics–the design risk ratio and the anti-
gen risk ratio. We define the design risk ratio as the ratio of the frequency of native CDR clus-

ters, lengths, or residue identities in the top scoring designs divided by the frequency of the

same native features sampled during the design trajectory. In this way, we can account for any

uneven sampling of the native structure and sequence during the design process. The antigen
risk ratio is the ratio of the frequency of the native CDR length, cluster, or residue identities

achieved in the top scoring decoys in independent antigen-present and antigen-absent simula-

tions. This metric accounts for any bias Rosetta may have for the native CDRs even in the

absence of the antigen, possibly because of favorable framework–CDR or CDR–CDR interac-

tions. In this paper, we utilize a benchmark of 60 κ and λ antigen-antibody complexes that we

chose to be as diverse in CDR lengths and clusters as possible. We show that RAbD is able to

achieve risk ratios greater than 1.0 for each CDR, and we show statistical significance of these

results with 95% confidence intervals.

To enable repeatable analysis and comparison of native, modeled, and designed antibody

structures output by RAbD, we developed a set of antibody-specific FeatureReporters and Fea-
ture R Scripts within the Rosetta Feature Reporter framework [73,75,76]. These have enabled

comparison of antibody design strategies and benchmarks, were used in the design of the anti-

bodies in this paper, and have aided in the general optimization of the antibody design

framework.

Finally, we show results where RAbD and the feature analysis reporters were used to experi-

mentally improve binding affinity of antibodies from two different antibody–antigen

complexes.

Results

Antibody design framework and program

We created a general framework and application for antibody design within the Rosetta software

suite written in C++. This highly customizable framework enables the tailored design of anti-

body CDRs, frameworks, and antigens using highly expanded core components of the Roset-
taAntibody framework [77–79] and our PyIgClassify clustering of antibody CDRs [53,54] as its

base. As with other Rosetta design protocols, RosettaAntibodyDesign depends on a “Monte

Carlo plus minimization” (MCM) procedure [80]. This means that at each stage of the simula-

tion, a change in sequence and/or structure is sampled randomly, followed by energy minimiza-

tion within the Rosetta energy function. If the resulting minimized structure (a “decoy”) has

lower energy than the previous decoy in the protocol, then the new structure is accepted. If the

energy of the new design is higher than the previous decoy, the new design is accepted with

probability exp(−ΔE/RT) where ΔE is the change in energy. This energy can be either the total

energy or the calculated interface energy, which is the energy of the complex minus the energies

of the separated antigen and antibody after side-chain repacking [81], or a weighted combina-

tion of both. The RAbD algorithm samples the diverse sequence, structure, and binding space of

an antibody-antigen complex (Fig 1; Fig A in S1 Supporting Information).

The protocol begins with the three-dimensional structure of an antibody–antigen complex.

This structure may be an experimental structure of an existing antibody in complex with its

antigen or a predicted structure of an existing antibody docked computationally to its antigen.

As a prelude to de novo design, the best scoring results of low-resolution docking of a large

RosettaAntibodyDesign (RAbD)
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number of unrelated antibodies to a desired epitope on a target antigen structure may be used.

It should be noted that design on predicted structures is generally less reliable than design on

high-resolution crystal structures due to possible inaccuracies in the model. The RosettaAnti-

bodyDesign protocol is driven by a set of command-line options and an optional set of design

instructions provided as an input file for increased control. Details and example command

lines and instruction files are provided in the Supplemental Methods section.

RAbD enables the grafting of CDRs from diverse clusters of different lengths within the

PyIgClassify database, sampling from the sequence and structural variation within each clus-

ter. Broadly, the RAbD protocol consists of alternating outer and inner Monte Carlo cycles.

Each outer cycle (of Nouter cycles) (Fig 1A) consists of randomly choosing a CDR (L1, L2, etc.)

from those CDRs set to design, randomly choosing a cluster and then a structure from that

cluster from the database according to the input instructions. The CDR is then grafted onto

the antibody framework in place of the existing CDR (GraftDesign). The program then per-

forms Ninner rounds of the inner cycle (Fig 1B), consisting of sequence design (SeqDesign) and

local structure optimization. Sequence design is performed by Rosetta’s side-chain repacking

algorithm: a residue is chosen randomly and the energy of each of its rotamers is evaluated

(both internal energy and interaction with the environment); if the residue is set to be de-

signed, then the rotamers of multiple residue types are tested; the side chain is then placed in

the rotamer (and residue type) with lowest energy. This is repeated for residues in the grafted

CDR as well as residues in neighboring CDRs and the framework (where only the native resi-

due types are used). Once this design is completed, local structure optimization is performed

with Rosetta’s standard local energy minimization routines. Amino acid changes are typically

sampled from profiles derived for each CDR cluster in PyIgClassify. Conservative amino acid

substitutions (according to the BLOSUM62 substitution matrix) may be performed when too

few sequences are available to produce a profile (e.g., for H3). Each inner cycle structurally

optimizes the backbone and repacks side chains of the CDR and its neighbors in order to opti-

mize interactions of the CDR with the antigen and other CDRs (Fig 2). Backbone dihedral

angle constraints derived from the cluster data are applied to limit deleterious structural per-

turbations. After each inner cycle is completed, the new sequence and structure are accepted

according to the Metropolis Monte Carlo criterion. After Ninner rounds of the inner cycle, the

program returns to the outer cycle, at which point the energy of the resulting design is com-

pared to the previous design in the outer cycle. The new design is accepted or rejected accord-

ing to the Monte Carlo criterion. After Nouter cycles (default of 25), the lowest energy design

observed during the run is output by the program as the final design. In practice, the whole

procedure is performed in parallel on a cluster to produce 100s or 1000s of output structures

(decoys). This ensemble of designs is then analyzed to choose specific sequences for experi-

mental testing, typically based on both total energy and interface energy, which are reported in

the decoys, or the needs of the specific project. Decoy discrimination, analysis, and selection

are critical to the experimental success of the final designs.

Fig 1. Schematic diagrams of RosettaAntibodyDesign. A. The outer loop: The protocol starts by (1) Choosing a CDR from those

that are set to design [L1, L2, etc.] randomly according to set weights (default is equal weighting) and (2) grafting a random structure

for that CDR from the CDRSet, a set of CDR structures from the PDB that satisfy user-defined input rules. (3) Regional Sequence

Design is then setup for all designable regions and (4) structural constraints on the CDRs and SiteConstraints on the antibody-

antigen orientation, if any, are set. (5) N Inner cycles are then completed, followed by (6) the application of the Monte Carlo criterion

to either accept or reject the preliminary designs. (7) Finally, the lowest energy designs are output. B. The inner loop: (1) The antigen-

antibody interface is first optionally optimized by running N cycles of RosettaDock [45]. Interface residues set to undergo sequence

design will be designed. (2) The inner Monte Carlo criterion is then applied. The conformations of the CDR, its stem, and

surrounding residues, and CDRs are then optimized according to the instruction file. (3) Residues from neighboring regions are

designed if enabled (Fig 2 shows this packing/design shell). (4) The inner Monte Carlo criterion is then applied again and (5) the

lowest energy decoy found in the inner loop is returned to the outer loop.

https://doi.org/10.1371/journal.pcbi.1006112.g001
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RAbD can be tailored for a variety of design projects and design strategies. This is accom-

plished through the use of a set of command-line options and an optional CDR Instruction

Fig 2. Packing shell setup. During the inner optimization cycle, a packing shell is created (cyan) around the chosen CDR (in this case, L1 in yellow), and its neighbors

(in this case, L3 and the DE loop (L4) in blue). By default, 6 Å is used as the packing shell distance. During the inner loop, all side chains are optimized and amino acid

changes are made to any CDRs or regions set to sequence. The chosen CDR and its neighbors additionally undergo backbone optimization during this stage according

to the minimization type chosen.

https://doi.org/10.1371/journal.pcbi.1006112.g002

RosettaAntibodyDesign (RAbD)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006112 April 27, 2018 8 / 38

https://doi.org/10.1371/journal.pcbi.1006112.g002
https://doi.org/10.1371/journal.pcbi.1006112


File. The CDR Instruction File (Fig 3) uses a simple syntax and enables control over what

lengths, clusters, germlines, and organism of each CDR will be sampled (the CDRSet) and

which structural optimizations are used to minimize the score of each design. Each instruction

can be set for all of the CDRs using a specific keyword, or they can be set individually. For

example, in a redesign project, we may want to design an antibody with a particular CDR that

is longer than the existing CDR in order to create new contacts with the antigen that are not

present in the starting structure. Alternatively, we may simply want to optimize the sequence

of a particular CDR or set of CDRs using the cluster profiles from PyIgClassify. These exam-

ples can be accomplished easily through the CDR Instruction File, and this flexibility has been

used to design the antibodies described below.

A core component of the RAbD protocol is an SQLITE3 antibody design database that

houses all structures, CDR-clustering information, species, germline, and sequence profile

data used for design. The database benchmarked in this paper comes from the August 2017

release of PyIgClassify, but up-to-date versions that reflect the current Protein Data Bank

(PDB) can also be obtained from the PyIgClassify website (http://dunbrack2.fccc.edu/

PyIgClassify). If RAbD uses non-redundant databases without outliers (the default), defined as

CDRs greater than 40˚ or 1.5 Å RMSD from one of our cluster centroids (not applied to H3),

this database comprises 657 L1 sequences, 471 L2 sequences, 681 L3 sequences, 805 H1

sequences, 930 H2 sequences, and 985 H3 sequences. In order to improve framework-CDR

compatibility in the final designs, λ and κ type antibodies are designed by limiting the resulting

CDRSet to only those CDRs derived from the same light chain type as the antibody undergo-

ing design (Fig 2).

Computational benchmarking of RAbD

To develop metrics for recovery of CDR lengths and clusters, we must account for the fact that

CDR lengths and clusters are not evenly distributed in nature, the PDB, or in the PyIgClassify

Fig 3. Example CDR instruction file used for successful 2J88 antibody design L14_7. Lines beginning with # are comments and are ignored by the program. Further

details are provided in Methods.

https://doi.org/10.1371/journal.pcbi.1006112.g003
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database and are not necessarily sampled evenly during RAbD’s Monte-Carlo trajectories. The

probability of choosing the native cluster and length during sampling directly influences the

statistical significance of the final recovery of the native length and cluster.

To account for this phenomenon, we borrow a concept from statistical epidemiology, the

Risk Ratio. The Risk Ratio (RR) is defined as the ratio of two frequencies: the frequency of

event X in situation A (e.g., disease progression while taking a drug) and the frequency of

event X in situation B (e.g., disease progression with no drug treatment). The Risk Ratio is sim-

ilar to the odds ratio, which is simply the ratio of the odds of X to not-X in situation A and the

odds of X to not-X in situation B. However, the interpretation of the odds ratio is often mis-

leading and used incorrectly to inflate a sense of benefit or risk [74]. In standard protein design

scenarios, we may define the risk ratio as the frequency of the native structure (or sequence) in

the top scoring designs divided by the frequency of the native structure (or sequence) sampled

during the protocol. If we perform design simulations on an existing high-affinity antibody–

antigen complex, it is reasonable to suppose that a successful protocol will recover the native

CDR lengths, conformations, and sequences of a high-affinity antibody more often than they

are sampled. We therefore define the design risk ratio (DRR) for CDR lengths and clusters as

the frequency of the native length or cluster in the top scoring designs (the top decoys, one

from each run of the program) divided by the frequency that the native length or cluster was

sampled during the design simulations.

Because Rosetta might prefer some CDR conformations and lengths because they are lower

energy, even in the absence of antigen, we also define, the antigen risk ratio (ARR), which is

the frequency of the native CDR length or cluster in the top scoring designs in the presence of

the antigen divided by the frequency of the native in the top scoring designs from independent

simulations performed in the absence of the antigen. It is straightforward to calculate confi-

dence intervals for the design and antigen risk ratios so that statistical significance of the

results can be assessed (see Methods).

We tested two types of design methods: ‘opt-E’, which uses the Metropolis Monte Carlo cri-

terion to optimize Total Rosetta Energy of the antibody-antigen complex, and ‘opt-dG’, which

optimizes the calculated interface energy. The interface energy is equal to the Total Rosetta

Energy of the complex minus the Total Rosetta Energy of the separated antigen and antibody,

after side-chain repacking. For the opt-E method, we calculate both the DRR and ARR values.

Since opt-dG includes a step of separating the antigen and antibody, an antigen-free simula-

tion is not relevant to the calculation, and we therefore only calculate the DRR for the opt-dG

designs. All 5 non-H3 CDRs were graft-designed, while all CDR sequences, including H3,

were sequence-designed either preferentially using derived CDR cluster profiles or conserva-

tive design where cluster sequence data were sparse. All 5 non-H3 CDRs began each simula-

tion with randomly inserted CDRs from the antibody design database. Prior to design

calculations, the structure of each antigen-antibody complex was minimized into the Rosetta

energy function with tight coordinate constraints on both backbone and side-chain regions

[62] (see Methods for protocol). We used an up-to-date version of the antibody design data-

base derived from the PDB as of August 2017. It contains 3,974 CDRs, while our original clus-

tering in North et al. contained 1,346 CDRs (http://dunbrack2.fccc.edu/pyigclassify).

A diverse set of 46 κ and 14 λ antibody–antigen complexes were used for the computational

benchmarks (Table 1; more details on the benchmark antibodies are provided in Table A in S1

Supporting Information). This set of antibody–antigen complexes includes a diverse set of

CDR lengths and clusters, with many of the clusters commonly found in the PDB. The bench-

mark complexes were selected to satisfy several criteria: (1) resolution� 2.5 Å; (2) buried sur-

face area in the antigen-antibody complex > 700 Å2; (3) CDR1 and CDR2 within 40˚ of one of

our cluster centroids; (4) contacts with CDRs in both the light chain and the heavy chain
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Table 1. Benchmark antibody complexes.

PDB VL H1 H2 H3 L1 L2 L3 Ag Length Antigen

1 1a14 κ H1-13-1 H2-10-1 H3-15 L1-11-2 L2-8-1 L3-9-cis7-1 388 Neuraminidase

2 1a2y κ H1-13-1 H2-9-1 H3-10 L1-11-2 L2-8-1 L3-9-cis7-2 129 Lysozyme C

3 1fe8 κ H1-13-1 H2-9-1 H3-9 L1-11-1 L2-8-1 L3-9-cis7-1 196 von Willebrand factor

4 1ic7 κ H1-13-1 H2-9-1 H3-7 L1-11-1 L2-8-1 L3-9-cis7-1 129 Lysozyme C

5 1iqd κ H1-13-1 H2-10-1 H3-10 L1-12-1 L2-8-1 L3-9-1 156 Coagulation factor VIII

6 1n8z κ H1-13-1 H2-10-1 H3-13 L1-11-1 L2-8-1 L3-9-cis7-1 607 ErbB-2

7 1ncb κ H1-13-1 H2-10-1 H3-13 L1-11-2 L2-8-1 L3-9-cis7-1 389 Neuraminidase

8 1osp κ H1-13-7 H2-9-3 H3-14 L1-11-2 L2-8-2 L3-9-cis7-1 257 Ozd [A

9 1uj3 κ H1-13-1 H2-10-1 H3-10 L1-11-2 L2-8-1 L3-9-cis7-1 205 Tissue factor

10 1w72 λ H1-13-1 H2-10-2 H3-15 L1-11-3 L2-8-1 L3-11-1 274 HLA-A1,β2-MG,peptide

11 2adf κ H1-13-1 H2-10-1 H3-11 L1-11-2 L2-8-1 L3-8-1 196 von Willebrand factor

12 2b2x κ H1-13-1 H2-9-1 H3-12 L1-10-1 L2-8-1 L3-9-cis7-1 223 Integrin alpha-1

13 2cmr κ H1-13-3 H2-10-1 H3-12 L1-11-1 L2-8-1 L3-9-cis7-1 226 gp41

14 2dd8 λ H1-13-10 H2-10-1 H3-11 L1-11-3 L2-8-1 L3-10-1 202 Spike glycoprotein

15 2ghw κ H1-13-1 H2-10-2 H3-10 L1-11-1 L2-8-1 L3-9-cis7-1 203 Spike glycoprotein

16 2vxt κ H1-13-1 H2-10-1 H3-6 L1-11-1 L2-8-1 L3-9-cis7-1 157 Interleukin-18

17 2xqy κ H1-13-1 H2-10-1 H3-11 L1-15-1 L2-8-1 L3-9-cis7-1 572 Envelope glycoprotein-H

18 2xwt λ H1-13-1 H2-10-1 H3-12 L1-13-1 L2-8-2 L3-11-1 239 Thyrotropin receptor

19 2ypv κ H1-13-1 H2-10-1 H3-12 L1-11-2 L2-8-1 L3-9-cis7-1 253 Lipoprotein

20 3bn9 κ H1-13-1 H2-10-2 H3-21 L1-11-1 L2-8-1 L3-9-cis7-1 241 MT-SP1

21 3cx5 κ H1-14-1 H2-9-1 H3-15 L1-11-2 L2-8-1 L3-9-cis7-1 185 Rieske Iron-sulfur protein

22 3ffd λ H1-13-1 H2-10-2 H3-11 L1-12-3 L2-12-2 L3-13-1 108 PTH-related

23 3h3b κ H1-13-1 H2-10-1 H3-13 L1-17-1 L2-8-1 L3-9-cis7-1 194 ErbB-2

24 3hi6 κ H1-13-1 H2-10-2 H3-13 L1-11-1 L2-8-1 L3-8-1 180 Integrin alpha-L

25 3k2u κ H1-13-1 H2-10-1 H3-11 L1-11-1 L2-8-1 L3-9-cis7-1 257 HGF activator

26 3l95 κ H1-13-1 H2-10-1 H3-12 L1-11-1 L2-8-1 L3-9-2 244 NOTCH1

27 3mxw κ H1-13-1 H2-10-1 H3-12 L1-11-1 L2-8-1 L3-9-cis7-1 169 Sonic hedgehog protein

28 3nid κ H1-13-1 H2-10-1 H3-12 L1-11-2 L2-8-1 L3-9-cis7-1 457 Integrin alpha-IIb

29 3o2d κ H1-13-1 H2-10-1 H3-15 L1-17-1 L2-8-1 L3-8-1 188 CD4

30 3rkd κ H1-15-1 H2-9-1 H3-16 L1-11-2 L2-8-1 L3-9-cis7-2 146 Capsid protein

31 3s35 κ H1-13-1 H2-10-1 H3-10 L1-15-1 L2-8-1 L3-9-cis7-1 122 VGFR2

32 3uzq κ H1-13-1 H2-10-1 H3-9 L1-15-1 L2-8-1 L3-9-cis7-1 114 Genome polyprotein

33 3w9e κ H1-13-1 H2-10-1 H3-15 L1-12-1 L2-8-1 L3-8-2 306 Envelope glycoprotein D

34 4cmh κ H1-13-1 H2-10-1 H3-13 L1-11-1 L2-8-1 L3-9-cis7-1 256 CD38

35 4dtg κ H1-13-1 H2-10-2 H3-14 L1-16-1 L2-8-1 L3-9-cis7-1 66 TFPI

36 4dvr κ H1-13-1 H2-10-1 H3-12 L1-11-1 L2-8-1 L3-8-1 313 gp160

37 4etq κ H1-13-1 H2-10-1 H3-12 L1-10-1 L2-8-1 L3-9-cis7-1 269 IMV membrane protein

38 4ffv κ H1-13-1 H2-10-1 H3-10 L1-10-1 L2-8-4 L3-9-cis7-1 730 Dipeptidyl peptidase 4

39 4fqj λ H1-13-1 H2-10-1 H3-18 L1-13-1 L2-8-1 L3-11-1 304 Hemagglutinin

40 4g6j κ H1-13-1 H2-10-2 H3-11 L1-11-1 L2-8-1 L3-9-cis7-1 158 Interleukin-1 beta

41 4g6m κ H1-15-1 H2-9-1 H3-12 L1-11-2 L2-8-1 L3-9-cis7-1 150 Interleukin-1 beta

42 4h8w λ H1-13-1 H2-10-2 H3-12 L1-14-2 L2-8-1 L3-11-1 353 gp160

43 4ki5 κ H1-13-1 H2-10-1 H3-15 L1-11-2 L2-8-2 L3-9-cis7-1 183 Factor VIII

44 4lvn κ H1-14-1 H2-9-1 H3-13 L1-12-1 L2-8-1 L3-9-cis7-1 344 Subtilisin-like SP

45 4ot1 λ H1-13-1 H2-10-1 H3-24 L1-13-1 L2-8-2 L3-10-1 129 Envelope glycoprotein B

46 4qci λ H1-13-1 H2-10-2 H3-13 L1-11-3 L2-8-1 L3-9-2 110 PDGFR Beta

47 4xnq λ H1-14-1 H2-9-1 H3-16 L1-11-3 L2-8-1 L3-9-1 212 Hemagglutinin (Fragment)

(Continued)
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variable domains; (5) non-redundancy–antibodies which bind the same antigen were only

selected if they bound to completely different sites on the antigen; 6) benchmark antibodies

were prioritized so as to comprise as diverse a set of CDR lengths and clusters given the distri-

bution of lengths and clusters present in the PDB. The benchmark contains 22 length classes

and 35 clusters over the 5 non-H3 CDRs and lengths of H3 from 6 to 24 residues.

We define the “%Sampled” as the rate at which the native length or cluster is sampled dur-

ing the design trajectories. The 5 non-H3 CDRs are very different in terms of the diversity of

lengths and clusters that are observed in the PDB [53], with L2 and H1 having more than 90%

of CDRs in the PDB with a single length and conformation (clusters L2-8-1 and H1-13-1

respectively), while L1, L3, and H2 are more diverse in both length and conformation. We ran

design simulations for the antibodies in the benchmark set by sampling the clusters of each

CDR evenly (regardless of length) of all clusters represented in the database by 5 or more

unique sequences from the same antibody gene (heavy, λ, or κ antibody CDRs). Thus, the %

Sampled of native CDR lengths (Fig 4A) is only 23% for the most length-diverse CDR, L1; fol-

lowed by L3 (50%) and H2 and H1 (both 66%), and L2 (92%), which is the least diverse (a few

λ L2 CDRs are length 12). The %Sampled of native CDR clusters is only 10–14% for L1, L3,

H1, and H2 and 34% for L2 (Fig 4B).

For each of the 60 antibodies, we ran 100 design trajectories, each with 100 outer design

cycles (Fig 1A) for each experiment (representing a total of 10,000 full design cycles for each

antibody) and analyzed the lengths and clusters of the final decoy from each of the 100 Monte

Carlo simulations. The %Recovered is then the number of final decoys out of 100 runs that

contain the native length or cluster (Fig 4A) for any given CDR. The %Recovered of length

generally runs parallel with the %Sampled with the least length-diverse CDRs (L2 and H1) hav-

ing higher length recovery than the others. The highest cluster recovery is for L2.

The Design Risk Ratio (DRR) is then defined by Eq 1:

DRR ¼
%Recovered
%Sampled

ð1Þ

where %Recovered and %Sampled are calculated over the 100 output decoys for all 60

Table 1. (Continued)

PDB VL H1 H2 H3 L1 L2 L3 Ag Length Antigen

48 4ydk κ H1-13-1 H2-10-2 H3-22 L1-11-1 L2-8-1 L3-9-2 353 gp160

49 5b8c κ H1-13-1 H2-10-1 H3-13 L1-15-1 L2-8-1 L3-9-cis7-1 139 PD1

50 5bv7 λ H1-13-1 H2-10-2 H3-19 L1-11-3 L2-8-1 L3-10-1 422 PC-sterol acyltransferase

51 5d93 κ H1-13-1 H2-10-1 H3-9 L1-10-1 L2-8-1 L3-9-cis7-1 244 Sulfhydryl oxidase 1

52 5d96 κ H1-13-1 H2-9-1 H3-12 L1-11-1 L2-8-1 L3-9-cis7-1 244 Sulfhydryl oxidase 1

53 5en2 κ H1-13-1 H2-10-1 H3-17 L1-11-1 L2-8-1 L3-9-cis7-1 141 Pre-glycoprotein GP

54 5f9o κ H1-13-1 H2-10-1 H3-15 L1-11-1 L2-8-1 L3-8-1 352 gp120 core

55 5ggs κ H1-13-3 H2-10-1 H3-13 L1-15-1 L2-8-1 L3-9-cis7-1 123 PD1

56 5hi4 λ H1-13-1 H2-10-2 H3-11 L1-13-2 L2-8-1 L3-9-1 132 Interleukin-17A homodimer

57 5j13 λ H1-13-1 H2-10-2 H3-15 L1-11-3 L2-8-2 L3-11-1 147 Thymic stromal lymphopoietin

58 5l6y λ H1-13-1 H2-10-1 H3-15 L1-11-3 L2-8-1 L3-11-1 112 Interleukin-13

59 5mes λ H1-13-1 H2-10-2 H3-12 L1-13-1 L2-8-1 L3-11-1 162 Mcl-1 homolog

60 5nuz κ H1-13-1 H2-10-1 H3-13 L1-15-1 L2-8-1 L3-9-cis7-1 156 Pre-glycoprotein GP

For each CDR, the PyIgClassify cluster is given. For H3, only the length is given. VL provides the kappa or lambda identify of the light chain variable domain of the

antibody. Antibodies to the same antigen bind in different locations and are not the same antibody.

https://doi.org/10.1371/journal.pcbi.1006112.t001
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antibodies (6000 total). A DRR greater than 1 indicates that the length or cluster was present

in the output decoys more frequently that it was sampled during the trajectories. The DRRs for

the length of CDRs are highest for L1 and H3 with values of 2.5 and 1.5 respectively. We do

not expect high DRRs for L2, H2, and H1 since their length diversity in the PDB is very limited

in the first place.

The DRRs for the clusters are much higher. For the opt-E protocol, the cluster risk ratios

are above 2.4 for all 5 non-H3 CDRs, and over 3.5 for L3 and H1. The results demonstrate the

utility of the DRR in accounting for the different levels of diversity in length and cluster across

the five CDRs in which GraftDesign was enabled. This result may come from both more favor-

able interactions and higher shape complementarity with the antigen–antibody interface using

the native cluster(s), as well as local CDR–CDR interactions, which help to enrich certain

lengths and clusters together.

There is a possibility that Rosetta scores some CDR structures more favorably than others

because of internal interactions within the CDR or interactions with other CDRs or the frame-

work. Some rare clusters may be high in energy or even artifacts of highly engineered antibod-

ies or errors in structure determination. To investigate this, we performed the opt-E protocol

without the antigen present in the simulations. We calculated an antigen risk ratio (ARR)

from Eq 2 as the ratio of the frequency of the native length or cluster in the final decoys from

the antigen-present simulations and the frequency of the native in the final decoys from the

antigen-absent simulations:

ARR ¼
%Recovered ðwith antigenÞ

%Recovered ðwithout antigenÞ
ð2Þ

where %Recovered (with antigen) and %Recovered (without antigen) are calculated from 100

design decoys of 60 antibodies (6000 structures each). The recovery values (Fig 5A) in the pres-

ence of antigen are all higher than the recovery values in the absence of antigen, with the

exception of L3 where they are approximately equal. This is reflected in the ARR results (Fig

5B) antigen risk ratios demonstrate that the native lengths and clusters are enriched particu-

larly for the L1 and H2 CDRs in the presence of the antigen. For the other CDRs, the values

are a little over 1.0, indicating that Rosetta prefers some of the more common clusters in the

Fig 4. Computational benchmarking of the opt-E protocol. Recovery metrics on 60 antibodies for the opt-E protocol (optimization of total Rosetta energy) for

each CDR that underwent GraftDesign in the RAbD design protocol. (A) %Recovered and %Sampled for each CDR length and cluster for the opt-E simulations.

(B) Design risk ratios (DRR) for recovery of CDR length and cluster for the opt-E simulations. 95% confidence intervals for the Risk Ratio statistics are calculated

as described in Methods.

https://doi.org/10.1371/journal.pcbi.1006112.g004
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PDB, even in the absence of antigen. For the light-chain CDRs, we sampled only from lengths

and clusters that contained at least 5 examples of structures from the same light-chain type,

either λ or κ. Especially for L3, this choice strongly restricts the number of applicable lengths

and clusters, and thus the antigen risk ratios for L3, like H1 and L2, are lower that one might

expect otherwise.

In addition to optimizing the total energy, design simulations in RAbD can alternatively

optimize the interface energy, which for our purposes is defined as the total Rosetta energy of

the antibody-antigen complex minus the energy of the separated antibody and antigen after

repacking and minimizing the energy of side-chain conformations of the interface residues.

The %Recovered is greater than the %Sampled (Fig 6A) for the lengths and clusters of all 5

CDRs, which is reflected in the DRR values. The cluster DRRs are greater than 1.5 for all 5

Fig 5. Antigen risk ratios for the opt-E protocol. Risk Ratios of benchmarks showing the enrichment in the recovery of native lengths and clusters in the presence of

the native antigen compared to simulations performed in its absence. (A) %Recovered length and cluster for the simulations in the presence and absence of antigen.

(B) Length and Cluster Antigen Risk Ratios (ARRs) A risk ratio greater than 1.0 indicates enrichment of the native length and cluster in the presence of the antigen

over simulations performed in the absence of the antigen.

https://doi.org/10.1371/journal.pcbi.1006112.g005

Fig 6. Computational benchmarking of the opt-dG antibody design protocol. Recovery metrics on 60 antibodies for the opt-dG protocol (optimization of

Rosetta interface energy) for each CDR that underwent GraftDesign in the RAbD design protocol. (A) %Recovered and %Sampled for each CDR length and cluster

for the opt-E simulations. (B) Design risk ratios (DRR) for recovery of CDR length and cluster for the opt-dG simulations. 95% confidence intervals for the Risk

Ratio statistics are calculated as described in Methods.

https://doi.org/10.1371/journal.pcbi.1006112.g006
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CDRs, while the length DRRs are only significantly above 1.0 for L1 which is the most length-

diverse CDR for both κ or λ antibodies.

To further investigate the effect of the antigen’s presence during the design phase, we per-

formed sequence design on one CDR at a time (6 per target, including H3) starting from the

native sequence and structure with and without the antigen present using the opt-E protocol

described above (the opt-dG protocol does not make sense in the absence of the antigen and

there is no straightforward way to calculate the sampling rate of amino acid types during the

simulations). In each of these twelve simulations (6 CDRs with and without antigen), we pro-

duced 100 models for analysis. Fig 7 shows the sequence recovery and antigen risk ratios sepa-

rately for residues in contact with the antigen in the starting structures and those not directly

in contact with the antigen in the starting complexes. The risk ratios were calculated from

Eq 3:

ARRðCDRÞ ¼

X

PDBid

X

i2CDR

sPDBid;iðantigen presentÞ
X

PDBid

X

i2CDR

sPDBid;iðantigen absentÞ
ð3Þ

where sPDBid,i is the fraction of 100 decoys that have the native residue at position i of the given

CDR in each PDBid.

For the non-contacting residues in all of the CDRs, most of which are part of the CDR

anchors or buried in the hydrophobic core of the variable domains, the sequence recovery rate

is 73% during simulations in the presence of the antigen and 67% during simulations in the

absence of the antigen. This is an overall antigen risk ratio of 1.084. The resulting ARR values

are near 1.0 for all six CDRs (Fig 7A). Many of these residues are strongly conserved in the

PyIgClassify profiles, and their recovery with and without the antigen present is expected.

By sharp contrast, residues in contact with the antigen have a lower recovery of only 48% in

the absence of the antigen but a much higher recovery rate of 72% in the presence of the anti-

gen. This is an overall antigen risk ratio for the antigen-contacting residues of 1.50 (95%CI =

[1.489, 1.514]). The contact residues ARRs range from 1.2 to 1.9 for the six CDRs (Fig 7B).

Since H3 contributes many residues that contributed to binding free energy, it is gratifying

Fig 7. Sequence design with the opt-E protocol on the 60 antibody benchmark. (A) Sequence recovery for amino acids in contact with the antigen and those not

in contact with the antigen from the antigen-present and antigen-absent simulations. (B). Antigen risk ratios (ARRs) for the contacting and non-contacting residues.

Values greater than 1.0 indicate that the native residue types were present in the design simulations in the presence of the antigen more often than they were present

in the design simulations in the absence of the antigen.

https://doi.org/10.1371/journal.pcbi.1006112.g007
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that the H3 risk ratio is above 1.5 and that H3 has the highest sequence recovery rate with the

antigen (Fig 7A).

We investigated the physical properties of the designed antibody-antigen complexes result-

ing from the opt-E and opt-dG benchmarks. As expected, the opt-dG simulations result in

lower interface energies than the opt-E simulations and nearly the same as the native antigen-

antibody complexes (Fig B in S1 Supporting Information). The total energies of the opt-E and

opt-dG simulations are relatively similar to each other and somewhat higher than the natives

(Fig C in S1 Supporting Information). The shape complementarities and surface areas of the

designed antibody-antigen complexes are also very close to the native structures, with the opt-

dG showing a slight improvement over the opt-E simulations (Fig D and Fig E in S1 Support-

ing Information).

Experimental validation

Although computational benchmarking can be extremely useful in optimizing a protocol and

its parameters for protein design, the true measure of new protein design methodologies is to

test computationally derived sequences experimentally by expressing and purifying the pro-

teins and testing them for desired functionality, including binding affinity and biophysical

properties of the designed molecules.

We tested a common scenario for which RAbD was intended–improving the affinity of an

existing antigen–antibody complex by grafting new CDRs in place of one or more of the native

CDRs. To this end, we tested the ability of the RAbD program to create viable antibody designs

that improve binding affinity in two antibody–antigen complexes: an HIV-neutralizing anti-

body known as CH103 (PDB: 4JAN) [82] that binds to the CD4 binding site of HIV gp120,

and an antibody that binds to the enzyme hyaluronidase, which is the main allergen in bee

venom (PDB: 2J88) [83]. These antibodies are not dominated by interactions of H3 with the

antigen and use common canonical clusters for the CDRs at the binding interface. Using this

knowledge and the general knowledge of CDR length and cluster variability, we designed both

L1 and L3 together, or H2 in the CH103 antibody. For the 2J88 antibody, we designed either

L1 and the light chain DE loop, or H2. The DE loop is a short loop between strands D and E of

the variable domain β sheet (residues 82–89 in AHo numbering). The ability of RAbD to treat

both the heavy- and light-chain DE loops as CDRs, which are typically considered framework

regions, was added later in program development after the elucidation of the role of the loop

in both antigen binding and stabilization, especially in regard to intra-CDR contacts with L1

[84]. In light of this, with the L1 design of the 2J88 antibody, we enabled sequence design (but

not graft design) of this light chain DE loop, which we call L4.

The CDRs selected for design were set to undergo graft- and sequence-sampling with the

relax protocol, allowing for new lengths and clusters in the final antibody design, while the

framework residues and antigen residues held their starting amino acid identities. The crystal

structures 2J88 and 4JAN were first minimized into the Rosetta energy function before being

used as starting points for the designs. An instruction file was given for each CDR design strat-

egy (L1 + L4, H2, and L1 + L3) with different algorithms and selection methods used to choose

the final designs. Details of these settings, instruction files, and design and selection strategies

can be found in Methods.

For 2J88, 30 designs were chosen, expressed, and purified with no detectable aggregation.

These 30 were chosen with no visual or manual inspection, and based purely on a ranking of

physical characteristics of each decoy determined by the AntibodyFeature reporters for each

design strategy and selection characteristic (Methods). Of these 30, 20 showed some degree of

binding affinity through an acceptable kinetic sensorgram signal of at least μM binding

RosettaAntibodyDesign (RAbD)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006112 April 27, 2018 16 / 38

https://doi.org/10.1371/journal.pcbi.1006112


consisting of L1 loops of length 11, 15, and 17 residues (wild-type: 11) in addition to a single

H2 design of 12 residues (wild-type: 9) (Fig 8A, Table B in S1 Supporting Information).

Three of these designs had improved binding affinity over the wild-type (WT), which binds

at 9.2 nM (Fig 8B), with the best design exhibiting a 12-fold improvement over wild-type with

a KD of 770 pM, as determined by Surface Plasmon Resonance (SPR) on a ProteOn XPR (Fig

8C). This design, designated as L14_7, had a different L1 cluster (L1-11-2) than the wild-type

Fig 8. Designed antibodies against bee hyaluronidase. (A) Apparent Binding Affinity (KD) of expressed and tested antibody designs for bee hyaluronidase (PDB:

2J88), grouped by designed CDR cluster, as determined using Surface Plasmon Resonance (SPR) on a Biacore 4000. The dotted blue line represents the binding affinity

of the native antibody on the Biacore machine (1.57x10-8 nM). Binding affinity is shown for the 26 designs that had detectable binding affinity (out of 30 tested). The

native CDRs are L1-11-2 and H2-9-1. (B) Kinetic sensorgrams of WT 2J88 Antibody to Bee Hyaluronidase. Two repeats of XPR (left); Biacore 4000 (right). (C) Kinetic

sensorgrams of design L14_7 to Bee Hyaluronidase Two repeats of XPR (left); Biacore 4000 (right). (D) Model of the interface changes in design L14-7, with designed L1

cluster L1-11-2 (cyan), superimposed onto the WT antibody from PDB ID 2J88 (gray). (E) Designed Sequences vs WT.

https://doi.org/10.1371/journal.pcbi.1006112.g008
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(L1-11-1), with six amino acid differences in the L1 sequence, and a single amino acid differ-

ence in the L4 loop (Fig 8D and 8E), which makes important contacts with the new L1 loop in

the design model. Of the L1/L4 design group where docking was enabled, L14_7 had the lowest

computational ΔG after filtering out the worst 90% of the designs by total Rosetta energy. The

other two designs with better affinity than the native, L1_10 (Fig F in S1 Supporting Informa-

tion) and L1_5 (Fig G in S1 Supporting Information) contained the same cluster as the native,

but with 4 amino acid changes in L1 out of 11 positions. Kinetic studies of these designs and

WT were done on both a Biacore 4000 and an XPR for a total of 3 replicates. Binding affinity

was improved against WT for each of these designs in each replicate.

Thermostability (Tm) of WT and these designs were similar, as measured by Differential

Scanning Calorimetry (DSC). While both the WT and designs had two Tm peaks, the major

peak of the WT 2J88 antibody was measured at 75.0 ˚C, while the designs L14_7, L1_10, and

L1_5 had similar Tm values of 71.9, 71.5, and 72.1 ˚C respectively (Fig H in S1 Supporting

Information).

Mutational analysis was done to delineate hotspot residues at the antibody-antigen inter-

face. Rosetta was used to guide this manual analysis through the use of the PyRosetta Toolkit

[85] and FoldIt Standalone [86] GUIs. Residue 7 (Lys) of the L1-11 loop of the L14_7 design

was selected for mutation due to its proximity to the antigen (making hydrogen bonds to the

antigen in the design model–Fig 8D) and favorable Rosetta energy. This position was mutated

back to its sequence-aligned WT residue (K38Y). Binding affinity worsened by approximately

3–4 fold as determined by SPR on a Biacore 4000 (Fig I in S1 Supporting Information). The

reverse experiment was done on the WT antibody for position 38 (Y38K) and the mutant

exhibited improved binding (14.2 nM to 4.3 nM) as expected (Fig J in S1 Supporting Informa-

tion). Finally, as a proof-of-concept, we improved one of the weaker-binding designs (L1_4),

which harbors a very long L1-17-1 loop by 2.5x, through a single S->V mutation at position

36 in the L1 loop (S37V, 655 nM -> 261 nM) (Fig K in S1 Supporting Information).

We chose 27 design variants of the antibody CH103 to express and test for binding to HIV

gp120 by using the AntibodyFeature reporters to rank and select prospective decoys. Of the 27

designs, 21 designs could be purified and tested for binding affinity against a panel of gp120

from different strains of HIV. Of these, 7 designs could bind one or more of the gp120 strains

as determined through SPR on a Biacore 4000 (Fig 9A and Table C in S1 Supporting Informa-

tion). One of these antibodies, H2-6, improved binding affinity to most of the gp120s tested,

with a 54-fold improvement to Core-Bal (91 nM to 1.7 nM) and a 40-fold improvement to

HXB2 (52 nM to 1.32 nM) (Fig 9B and 9C, Fig L in S1 Supporting Information). H2-6 had the

least number of buried unsatisfied hydrogen bonds in the interface in the H2 design group

(Methods). This antibody design had a longer H2 loop (cluster H2-10-6) than the native (clus-

ter H2-9-1), came from an unrelated mouse antibody [87] in the antibody design database,

and is significantly different than the WT CDR (Fig 9D and 9E).

We performed mutational analysis on the CH103 designs and WT antibodies. Based on the

sequence alignment of the H2 loops from the H2-6 design and the WT antibody (Fig 9E) and

structural observation using the Rosetta GUIs, we mutated two hypothesized hotspot residues

within the H2 loop at positions 3 and 8 of the designed length-10 CDR in the H2-6 design

(AHo numbering 59 and 67 respectively) to the aligned WT residue (Y->F and Y->E respec-

tively). Binding affinity was measured for Core HXB2 and Core Bal using SPR on a ProteON

XPR. Notably, the position 67 mutant decreased binding significantly (1.7 nM to 30.9 nM for

HXB2; 8.8 nM to 212 nM for Core Bal), while the position 59 mutants had a smaller effect (1.7

nM to 2.2 nM for HXB2; 8.8 nM to 12.8 nM for Core Bal) (Fig M in S1 Supporting Informa-

tion). The reverse experiment was also done, where the H2-6 residues at the same positions

were placed into the WT antibody. This reverse experiment confirmed position 67 as a hotspot
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residue (Fig N in S1 Supporting Information); Kd for HXB2 improved 60-fold from 138 nM to

2.3 nM, and Kd for Core Bal improved 93 fold from 1.1 μM to 11.7 nM.

To investigate the role of glycans in CH103 binding, we created glycan knockouts in both

the native antibody (Fig O in S1 Supporting Information) and the ZM176 strain gp120 (Fig P

in S1 Supporting Information). Native antibodies do not usually have N-linked glycosylation

sites near the paratope and in all cases except AC10, the glycan-knockout antibodies did not

affect binding affinity significantly. However, multiple antibody designs were sensitive to the

463 and/or 386 glycans of gp120, which are in structural proximity to the antibody binding

site. A single antibody design that included L1 and L3 CDRs design together was able to bind,

but only with the potential 386 glycan knocked out. Meanwhile, two designs bound signifi-

cantly better to ZM176 when the 386 glycan was knocked out. These glycan knockout studies

show the importance of glycan considerations for some antigens and for antibody-design in

general.

Fig 9. Binding of designed antibodies to HIV gp120. (A) Apparent binding affinity (KD) of WT CH103 antibody and designed antibodies to a panel of gp120

antigens. Here, 30 designs were expressed and tested, where 7 had detectable binding to these gp120s. (B) Binding affinity (KD) of the designed antibody, H2-6, versus

the wild-type antibody CH103. (C) Kinetic sensorgrams of CH103 WT and design H2-6 to two select GP120s, Core Bal and PVO as determined through a Biacore

4000. (D) Model of the interface changes in design H2-6, with designed H2 cluster H2-10-1 (cyan), superimposed onto the WT antibody from PDB ID 4JAN (gray) (E)

Alignment of H2-6 and the WT antibody CH103 from PDB ID 4JAN.

https://doi.org/10.1371/journal.pcbi.1006112.g009
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The results shown here demonstrate that RAbD can be used to successfully improve the

binding affinity of antibodies, and that those designs can have different CDR lengths and clus-

ters from the starting antibody.

Discussion

The knowledge-based RosettaAntibodyDesign framework and application was developed to

enable reliable, customizable structure-based antibody design for a wide variety of design goals

and strategies based on a comprehensive clustering of antibody CDR structures [53]. To test

the ability of RAbD to produce native-like antibody designs before it was used experimentally,

we performed rigorous computational benchmarking using novel recovery metrics, the design

risk ratio (DRR) and the antigen risk ratio (ARR), which provided needed statistical signifi-

cance for recovery metrics over random sampling. The results showed that RAbD was able to

enrich for native lengths and clusters–even with the large structural diversity of our underlying

antibody design database and flat sampling over CDR clusters, while recovering native-like

physical characteristics of the interface and antibody. We applied RAbD to two different anti-

gen-antibody systems where the ability to tailor the program to a specific need and the use of

our knowledge-based approach to both antibody design and selection led to successful experi-

mental designs that improve binding affinity significantly using different CDR lengths and/or

clusters.

While RAbD is highly tailorable, there are only a few choices that must be made for any par-

ticular antibody design project. First, after examining the initial structure of the antigen-anti-

body complex, the user must choose which CDRs to design and whether these CDRs should

be subject to graft-design or only sequence-design. It may be the case that one CDR does not

contact the antigen at all in the starting structure, and a user may choose to subject only that

CDR to graft-design. The other CDRs may or may not require sequence design as well. In

other cases, more drastic changes in the starting antibody may be desirable. For example in ab

initio design to a new epitope or in redesigning an existing antibody for a homologue of its

antigen, the user may choose to perform graft design on multiple CDRs. The user should also

decide whether to optimize interface energy (opt-dG), total energy (opt-E) during the Monte

Carlo design simulations, or a weighted combination of both,. If the existing antibody has low

affinity, then interface dG may be the more relevant choice; however, if the existing antibody

has low stability but reasonable affinity, then total energy may be more suitable.

Second, the user may select different optimization protocols for the inner loop of RAbD.

This includes whether to perform docking refinements or not and whether to use more com-

putationally intensive relax algorithms. For design against a native antigen present in the start-

ing structure, we recommend not using the additional docking step, since local optimization

will usually be sufficient for this purpose. It will usually be better to generate more decoy

designs rather than expending CPU time on docking. However, if the antigen is not the same

as the one for the starting antibody, either because it is an ab initio design or because it is

homologous to the starting antigen, then we recommend including the docking step in the

inner loop.

Third, the user can determine the number of inner and outer loop steps and the number of

individual design runs to perform. The default values for the inner and outer loops steps are

reasonable and usually do not need to be altered. The number of design runs should be at least

1,000 and may be as high as 10,000, depending on CPU availability for the final production

run (100 was used for benchmarking purposes).

Finally, significant user input is needed in deciding how many and which antibodies to syn-

thesize and test experimentally. Our rates of success–the number of successfully improved
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binders out of the number of antibodies expressed and tested in binding studies, were 3 in 30

for the bee venom antibodies and 1 in 27 for the HIV gp120 antibody redesign, which success-

fully bound better to gp120 from several strains of HIV. These are comparable to applications

in other systems in the literature [70,88,89]. Our experience and that of others [90] acts as a

guide for employing computational design techniques in real-world applications of computa-

tional interface design.

We recommend that users consider both the total energy of the antibody-antigen complex

as well as the interface ΔG of the complex (regardless of which is used to govern the Monte

Carlo decision steps). These values are reported in every output decoy file and the associated

score file. In our experimental tests, we selected designs to synthesize that had low values of

both total energy and interface dG. Other important features may include shape complemen-

tarity of the antibody and antigen and the number of hydrogen bonds and unsaturated hydro-

gen bonds within the interface. The choice of criterion should be based on the stability and

affinity of the starting antibody and the goals of the design project.

RAbD is most similar to methods previously developed by two other research groups:

OptCDR [41] and OptMAVEn [42], developed by Maranas et al., and AbDesign developed by

Fleishman et al. [47] These authors also present computational benchmarking of their meth-

ods, and our benchmarking procedures, metrics, and results can be compared with theirs. We

believe our benchmarks are better suited to testing computational antibody design methods

than the work of previous authors, and that the risk ratios we have used provided needed con-

text and statistical significance missing from earlier studies.

For OptCDR, Pantazas and Maranas constructed 100 decoys for 254 antibodies with CDRs

borrowed from other antibody structures and used a simple scoring system that penalized ste-

ric conflicts of CDR backbone atoms with any atom of the antigen, favored interactions with a

flat score between the sum of van der Waals radii and 8 Å between CDR backbone atoms and

atoms of the antigen, and a zero score for longer distances. The native CDR coordinates had

better scores than the constructed decoys on average. This is not surprising since almost all of

the decoys would have at least one non-native CDR length or cluster, and the antibody as a

whole would score worse than the exact native structure, which would have zero clash score

and a favorable contact profile. They did not evaluate whether decoys with similar CDR

lengths or clusters as the native scored well, as we have done with the length and cluster design

risk ratios.

In a second computational experiment, they tested a set of 95 experimentally characterized

mutants of a single antibody (anti-VLA1, PDB: 1MHP), 12% of which had improved affinity

experimentally [91]. They claim 78% binary total accuracy (Q2) on this set, and a 50% positive

predictive value (PPV), which is the percentage of their positive predictions that are true

positives (improved affinities). It is impossible to discern a consistent and complete set of eval-

uative measures typically used in binary prediction methods (TPR, TNR, PPV, and NPV, bal-

anced accuracy, etc.) [92] from these limited pieces of data. Finally, they performed a sequence

design test and found that the native sequence scored better than all decoy sequences for two

thirds of 38 test cases, although this does not indicate that the method could sample and find

these native sequences from scratch, which is the typical sequence recovery metric in protein

design. They did not provide any measures of statistical significance of these results, as we

have done. By contrast, we measured sequence recovery of residues in contact with the antigen

and achieved a 72% recovery in the presence of the antigen and 48% in simulations without

the antigen, which is an ARR of 1.50±0.01 (95% confidence interval).

OptMAVEn [42] is based on the MAPS database developed by the same authors. For the

heavy chain, κ light chain, and λ light chain, MAPS contains separate PDB files for the struc-

tures of V regions (through the beginning of CDR3), CDR3 segments, and post-CDR3
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segments (“J regions”). If we count unique sequences: for the variable regions, there are 60

heavy, 34 κ and 21 λ segments in MAPS; for CDR3, there are 413 heavy, 199 κ and 39 λ
sequences; and for the J regions, there are 3 heavy, 4 κ, and 6 λ sequences. RAbD uses an

updated and updateable database of 754 non-redundant sequences per CDR (on average over

6 CDRs) to graft CDRs in any combination onto any starting framework, rather than spending

CPU on designing the whole antibody variable domains, which may have already been opti-

mized for stability or other properties. RAbD can mix CDR1s and CDR2s from different

sources, rather than restricting them to a given V region from the PDB, as OptMAVEn does.

Generally, this is a positive feature, since it allows RAbD to sample sequences and structures

that are not likely to be present in an animal immune system or in an antibody display library.

RAbD also has the ability to keep CDR sampling within a particular germline, including that

of the starting antibody.

In their computational testing of OptMAVEn, Li et al. demonstrated that their grid search

over antigen positions and orientations is able to sample (but not rank or score) structures rel-

atively similar to the native structure for 120 antigen-antibody complexes (antigen protein

lengths of 4 to 148 amino acids) [42]. This is useful to know but does not represent a recovery

metric. They utilized OptMAVEn to produce designs for the same benchmark set and were

able to produce designed antibodies with lower calculated interaction energies than the native

for 42% of the cases, but this does not show that such antibodies would in fact bind better than

the native, nor does it show that the native CDR lengths or conformations or sequences were

obtained more frequently than one would expect, as our DRR does. For two antibodies, the

authors were able to show that they could recover 20% (HIV VRC01) and 35% (Influenza

CH65) of mutations from low-affinity antibodies to high-affinity, matured antibodies.

For their AbDesign method, Lapidoth et al. clustered the V regions of antibodies (up to

the beginning of CDR3 of each variable domain) purely by the combination of lengths present

at CDR1 and CDR2 [47]. They clustered CDR3 for each domain by length and RMSD. The

input data consisted of 788 heavy-chain domains and 785 κ light-chain domains (no λ chains

were included), broadly clustered into 5 κ V-regions, 2 κ L3 conformations, 9 heavy-chain V

regions, and 50 H3 conformations. By contrast, RAbD uses the 72 CDR clusters of North et al.

to group the non-H3 CDRs and contains 985 unique H3 sequences. Like OptMAVEn, AbDe-

sign combines fragments that comprise the entire variable domains, rather than concentrating

CPU on the design of the CDRs that contact the antigen. Thus it is not suitable for many

design projects, which usually involve changing the sequences of one or more CDRs rather

than a wholesale design of a new antibody, including the frameworks.

AbDesign was computationally tested on only 9 antibodies [47]. The authors compared fea-

tures such as shape complementarity, buried surface areas, and interaction scores with the

native antibodies. The average shape complementarity of their decoys was approximately 0.61,

while that of the natives was 0.68. Our opt-dG decoys reached an average of 0.68 in shape com-

plementary scores while the native structures in our benchmark averaged 0.70 (Fig D in S1

Supporting Information). AbDesign’s 9 designed antibodies achieved an average of -26.1 REU

in binding energy, while our 60 designed antibodies averaged -42 REU in the opt-dG simula-

tions (Fig B in S1 Supporting Information). In terms of recovery of the native structure, they

calculated Cα RMSDs to native for each of the CDRs of the top scoring design for each of the 9

antibodies. For all of the non-H3 CDRs and 6 of the H3s, the designs had CDR lengths that

matched the native antibodies. For 36 of the 45 non-H3 CDRs (80%), the Cα RMSDs were bet-

ter than 1.0 Å.

It is difficult to assess the significance of these results, because the source database for sam-

pling in AbDesign must be dominated by the same CDR lengths and clusters found in the

native antibodies in the benchmark. To investigate this, we searched PyIgClassify for the 9
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antibodies in this benchmark for their clusters according to our nomenclature. Since H3 does

not cluster well beyond length 8, we report only the lengths of H3. The representation of clus-

ters in their benchmark is as follows, including the number out of 9 antibodies in their bench-

mark set: L1-11-1 (4/9); L1-11-2 (3/9); L1-12-1 (1/9); L1-16-1 (1/9); L2-8-1 (9/9); L3-9-cis7-1

(7/9); L3-9-cis7-2 (1/9); L3-9-1 (1/9); H1-13-1 (8/9); H1-13-3 (1/9); H2-10-1 (7/9); H2-10-3

(1/9); H2-9-1 (1/9); H3-9 (1/9); H3-10 (4/9); H3-11 (2/9); H3-12 (2/9). L1-11-1 and L1-11-2

are very similar to each other (<0.5 Å RMSD). As it turns out, the 4 non-H3 CDRs with the

largest RMSDs to native (>1.8 Å) are those with less common clusters or lengths: L1-12-1

(1IQD, 1.85 Å RMSD), L3-9-1 (1IQD, 2.12 Å RMSD), H1-13-3 (2CMR, 2.04 Å RMSD), and

H2-10-3 (1P2C, 1.90 Å RMSD). For comparison, the very common H1-13-1 cluster is about

1.6 Å from H1-13-3, and the common H2-10-1 is 0.7 Å away from H2-10-3. This indicates

that AbDesign is dominated by its sampling database in a way that makes the benchmarking

data difficult to interpret. The design risk ratio we developed in this work solves this problem

by demonstrating the increase in recovery over the sampling rate of any particular conforma-

tion in the database. Similarly, the antigen risk ratio demonstrates that the sampling and scor-

ing is able to choose native-like CDRs when the antigen is present in the simulations more

frequently than when it is absent, indicating that the design process is choosing CDR struc-

tures and sequences likely to bind the antigen. Finally, Lapidoth et al. achieved a sequence

identity of 32% for residues in the binding site of the antibodies in their benchmark, compared

to RAbD’s values of 72% in our opt-E benchmark (and a risk ratio of 1.50 over simulations in

the absence of the antigen).

RAbD and AbDesign have a number of similarities and several important differences. They

both utilize structural clusters of fragments of antibody structure and their associated sequence

profiles to build new antibodies during a design simulation. They both utilize Rosetta’s dock-

ing and side-chain repacking routines to optimize the structure of the antigen-antibody com-

plex during design.

The clustering of antibody structures and PSSM derivation differ substantially between the

two methods. AbDesign breaks up each domain of antibodies into two segments–the V region

up to the beginning of CDR3 and a segment containing CDR3 and the rest of the variable

domain up to its C-terminus. AbDesign clusters its V regions only by the combination of

sequence lengths of CDR1 and CDR2. Thus it samples the entire V domain and merges

sequence data from different canonical structures of CDR1 and CDR2. This can lead to prob-

lems because many CDR clusters have required residue types, often glycine or proline, at cer-

tain positions in order to form the correct loop conformation. The strategy of replacing the

entire heavy and light-chain variable domains with different fragments means that AbDesign

is not suitable for optimizing existing antibodies, which is a very common task in antibody

engineering and therapeutic development projects. Instead, as intended, it is more suitable for

ab initio design of antibodies, which is a very challenging task.

Conversely, RAbD treats each CDR separately and samples structures from canonical clus-

ters and their individual sequence profiles as defined in our PyIgClassify database, which is

updated on a monthly basis. This allows mixing and matching of CDR1 and CDR2, while our

PSSMs are more closely defined by the structural requirements of each canonical conforma-

tion. The CDRs are grafted onto the antibody framework provided by the user, which may

have already been optimized for specific properties, rather than redesigning the entire variable

domains, as AbDesign does.

RAbD and AbDesign are implemented in quite different ways. AbDesign depends on a

series of Rosetta scripts, which are xml files that control Rosetta functions. It depends on a

mover called splice, which is not documented. It has only been benchmarked on the score12

scoring function of Rosetta, which has not been the default scoring function since 2013.
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Finally, AbDesign is difficult to customize for specific problems in antibody design, such as

sampling defined lengths of a given CDR or sampling from within a particular germline or

CDR cluster.

RAbD is a full-fledged Rosetta application, a command-line program that runs the simula-

tion according to command line options and rules provided in an optional CDR Instruction

File. The run can be setup as simple as:

antibody_designer.macosclangrelease -s 2r0l_1.pdb -graft_de-
sign_cdrs L1 -seq_design_cdrs L1 L2 L3 -light_chain kappa
-nstruct 100

The Instruction File makes RAbD highly tailorable. One or more CDRs can be designed or

not designed and sampling of CDR structures for grafting can be restricted by length, cluster,

species, germline, etc. All of RAbD’s dependencies are available in the public release of Rosetta.

RAbD is also very well documented so that new users can quickly set up their design runs.

RAbD has been benchmarked on the current Rosetta energy function, REF2015 [93], which

utilizes our smoothed backbone-dependent rotamer library for protein side chains [94], our

smoothed Ramachandran probability densities, and cubic splines for all ϕ,ψ-dependent scor-

ing functions, as described by Leaver-Fay et al. [73]. These scoring functions are important for

locally minimizing the Rosetta scoring function by altering backbone and side-chain dihedral

angles. The older scoring function used by AbDesign contained very rough surfaces and linear

spline estimates for the Ramachandran terms that resulted in poor structure optimization.

A major challenge moving forward, especially in regard to true de novo design, is the difficulty

in effective sampling and design of the H3 loop, owing to its extreme variability and lack of clus-

tering. To aid in this, H3-specific design strategies in the program can include up-weighting H3

graft sampling from other CDRs, restricting the use of H3 loops in the CDRSet to kinked-only

(See Methods) [95,96], and reducing the search space to only short loop lengths that cluster well;

however, much more work is needed to benchmark and test H3-specific design. Recently, we

have shown that H3-like loops can be found in non-antibody proteins [95]. These loop structures

could be used to supplement existing H3 structures in our antibody database as additional tem-

plates for H3 GraftDesign. The specific design of antibody H3 loops will be a major challenge in

the next phase of antibody design methodology development, but using the RAbD framework

and new methods for antibody design benchmarking outlined here should aid in this challenge.

These promising computational and experimental results show that RAbD is able to design

antibodies with similar features to the native antibodies and antibodies with improved affinity.

It can be used for a variety of antibody design tasks through the use of its highly customizable

interface. RAbD represents a generalized framework and program for antibody design and

makes many antibody design projects feasible that are either difficult or prohibitive using his-

torical, traditional means, making computational antibody design a tangible reality.

Methods

Transfection and expression

All antibody designs were expressed as IgGs in 293F cells using the pFUSE vectors (pFUSEss-

CHIg-hG1 (human heavy), pFUSEss-CLIg-hL2 (human lambda), and pFUSEss-CLIg-hk

(human kappa)). Bee Hyaluronidase and gp120 antigens were expressed in 293F cells using

pHLsec vectors. Opti-Mem media and FreeStyle293 Expression media were first warmed to 37

˚C. 293F cells were checked for viability at 95% and at a concentration greater than or equal to

2.4x106 cells/ml. 6 mls of OptiMem were mixed with 125 μg of heavy chain DNA, and 125 μg

of light chain DNA in one 15 ml conical tube, and 250 μg of fectin in the other. After a five

minute incubation, the DNA tube was poured into the fectin tube and was left to incubate for
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21 minutes. The 293F cells were then diluted to 1.2x106 cells/ml, added to a 500 ml shaker

flask, and the fectin/DNA mixture was added to the flask. The 500 ml flask was incubated in a

37 ˚C, 8.0% CO2, 80% humidity shaking incubator for four days. The supernatant was har-

vested on the fifth day using 500 ml centrifuge tubes and spinning for 20 minutes at 4000 rpm.

The supernatant was then filtered in a 500 ml filter unit.

Purification

Antibodies were purified by first using 1 ml of GE rProtein A Sepharose Fast Flow resin in a

chromatography column, and then washing with 10 ml dH2O and 10 ml PBS. The antibody

supernatant was poured onto the column and then washed with 10 ml of PDB, followed by 10

ml of 0.5 M NaCl in PDB, and then another 10 ml of PBS after all supernatant had passed

through the column. The antibody was then eluted with 6 ml of Thermo Scientific IgG Elution

Buffer into a 50 ml conical tube of 0.5 ml, 1M Tris-HCl. The eluted antibody was then placed

into a Slide-A-Lyzer cassette and dialyzed against PBS with three changes. After dialysis, the

antibody solution was filtered using a 0.22 micron syringe filer and the OD was checked to

obtain the final concentration of antibody.

Binding assays

Kinetics and affinity of antibody-antigen interactions were determined on a Biacore 4000 (GE

Healthcare) using Series S Sensor Chip CM5 (BR-1005-30, GE Healthcare) and 1x HBS-EP

+ pH 7.4 running buffer (20x stock from Teknova, Cat. No H8022) supplemented with BSA at

1 mg/ml. We followed Human Antibody Capture Kit instructions (Cat. No BR-1008-39 from

GE Healthcare) to prepare chip surface for ligands capture. In a typical experiment about 9000

RU of capture antibody was amine-coupled in appropriate flow cells of CM5 Chip. 3M Magne-

sium Chloride was used as a regeneration solution with 180 seconds contact time and injected

once per each cycle. Raw sensorgrams were analyzed using Evaluation software (GE Health-

care), double referencing, Equilibrium or Kinetic with Langmuir model or both where applica-

ble. Analyte concentrations were measured on NanoDrop 2000c Spectrophotometer using

Absorption signal at 280 nm.

Antibody-Antigen binding kinetics were confirmed on a ProteOn XPR36 (Bio-Rad) using

GLC Sensor Chip (Bio-Rad) and 1x HBS-EP+ pH 7.4 running buffer (20x stock from Teknova,

Cat. No H8022) supplemented with BSA at 1mg/ml. We followed Human Antibody Capture

Kit instructions (Cat. No BR-1008-39 from GE) to prepare chip surface for ligand capture. In a

typical experiment, about 6000 RU of capture antibody was amine-coupled in all 6 flow cells of

GLC Chip. 3M Magnesium Chloride was our regeneration solution with 180 seconds contact

time and injected four times per each cycle. Raw sensorgrams were analyzed using ProteOn

Manager software (Bio-Rad), interspot and column double referencing, Equilibrium or Kinetic

with Langmuir model or both where applicable. Analyte concentrations were measured on

NanoDrop 2000c Spectrophotometer using Absorption signal at 280 nm.

Thermostability assays

Differential scanning calorimetry (DSC) experiments were performed on a MicroCal VP-Ca-

pillary differential scanning calorimeter (Malvern Instruments). The HEPES buffered saline

(HBS) buffer was used for baseline scans and the protein samples were diluted into HBS buffer

to adjust to 0.6 mg/ml. The system was set to equilibrate at 20 ˚C for 15 min and then heat up

until a temperature of 125 ˚C was reached at a scan rate of 90 ˚C/h. Buffer correction, normali-

zation, and baseline subtraction were applied during data analysis using Origin 7.0 software.

The non-two-state model was used for data fitting.
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The RosettaAntibodyDesign program

The RAbD protocol consists of repeated execution of an outer loop and an inner loop (Fig 1).

Most Rosetta protocols utilize Monte Carlo + minimization algorithms to optimize sequence

and structure effectively. By allowing occasional increases in energy, we enable structures to

overcome energy barriers to escape local energy wells in order to drive the energy down fur-

ther. In order to traverse the energy landscape more effectively, the Monte Carlo criterion is

applied during the design simulation for both the outer and inner loops of the algorithm.

The general RosettaAntibodyDesign protocol consists of 4 major tasks:

1. Choosing a CDR structure to graft: In the other loop, randomly choosing a CDR from

those CDRs set to design, choosing a CDR cluster for that CDR, and choosing a structure

from the design database for that CDR cluster (Fig 1A).

2. Grafting a CDR: Grafting that CDR onto the antibody framework. This structure is then

passed to Ninner cycles of the inner loop.

3. Sequence design and side-chain repacking in the inner loop: Sequence design in Rosetta

consists of a Monte Carlo side-chain repacking procedure in which residues to be designed

sample rotamers of multiple residue types. All residues in the grafted CDR passed from the

outer loop to the inner loop can be redesigned in one round of the inner loop.

4. Local energy minimization and application of the inner-loop Monte Carlo criterion.

After sequence design and repacking, local steepest-descent energy minimization (or

optionally Rosetta’s Relax algorithm) is applied, which alters the dihedrals of the backbone

and the side chains. The inner cycle Metropolis Monte Carlo criterion is then applied to the

resulting structure using either the total energy (opt-E) or the interface energy (opt-dG)

after each cycle of the inner loop.

5. Application of the outer-loop Monte Carlo criterion: Once a structure exits the inner

loop after Ninner cycles (default 1), the structure is then passed back to the outer loop where

the Monte Carlo criterion is applied, and the algorithm continues with Step 1. The outer

loop Metropolis Criterion can either be applied on the Total Energy (opt-E) or the Interface

Energy (opt-dG). The cycle repeats (Step 1–5) for Nouter cycles (default 25). The output

design is the structure with the lowest energy observed during the simulation.

The entire procedure may be repeated many times (1,000–10,000) so that an ensemble of

designs is produced from which some number of the top-ranking sequences may be chosen

for synthesis and testing. The outer and inner loops of RAbD can be tailored for a variety of

design projects and design strategies through the optional CDR Instruction File, an abundant

set of command-line options, and object-oriented code design, which enables RosettaScript-

able [97] framework components. Each of the five basic steps is described below in turn. Fur-

ther details are provided in the Supplemental Methods.

(1) Choosing a CDR structure to graft

The CDRSet instructions tell the program which CDR lengths, clusters, and specific structures

to include or exclude from the antibody design database for graft-based design. By default,

every CDR length is enabled. The light chain type (κ or λ) be specified on the command-line

in order to limit the CDRSet to those that originate from that gene, which is aimed at increas-

ing stability of the final antibody. No light chain is specified for camelid antibody design.

There are three simple algorithms that control how the CDR structure is chosen from the

database during the GraftDesign stage. The default is to choose a CDR cluster from the list of
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available clusters and then choose a structure from that cluster (even_cluster_mc). One can also

choose a structure from all available structures, which samples according to the prevalence of

that length and cluster in the database (gen_mc). Or the outer loop can choose a length ran-

domly and then a cluster given that length, and finally a structure from that cluster (even_-
length_cluster_mc). We recommend even_cluster_mc for most purposes. Finally, when

designing a single CDR, the deterministic_graft algorithm can be used to graft every structure

available. The lengths, clusters, and particular structures that are sampled and grafted can be

controlled through the CDR Instruction File.

RosettaAntibodyDesign uses an SQLITE3 database to house all antibody and CDR data

needed for the program, including full structural coordinates of CDRs, CDR length, cluster,

species, and germline identifications, as well as CDR cluster sequence profile data. The publicly

available release of Rosetta includes a smaller database (about 30 MBytes) that includes only

the structures in the data analyzed by North et al in 2011. As with other large databases utilized

by Rosetta [98], the current database is too large to be distributed with Rosetta by default. It

can be obtained from PyIgClassify [54], which is typically updated every month and reflects

data from the current PDB. All computational benchmarking in this paper utilized a recent

version of the database (August 2017). The experimental tested designs utilized a version from

November 2016.

The up-to-date database consists of only non-redundant CDR data at a 2.8 Å resolution

and 0.3 R factor cutoff. CDR cluster outliers are then removed as described in the Supplemen-

tal Methods. In order to cull for non-redundancy in the remaining CDR loops, the CDR is

selected in the order of: highest resolution! lowest R factor! lowest normalized distance to

the cluster centroid. These databases are used in all aspects of the antibody design algorithm,

including the GraftDesign step, which uses the raw coordinates in the database and the SeqDe-
sign step, which uses an additional table for CDR cluster profiles (residue probabilities at each

position) created from the non-redundant sequence data. The CDR Instruction File helps

enable additional culling during the GraftDesign step, controlling which lengths, clusters, spe-

cies, germlines, and structures, are used or left out.

The majority of H3 structures contain a “kink” at the C-terminus involving a Cα-Cα-Cα-

Cα dihedral around 0˚ for the last three residues of H3 and the conserved tryptophan residue

immediately following H3. More than 80% of H3 structures contain this kink, whose function

in part is to break the β-sheet and allow the H3 CDR to form diverse non-β structures [95].

H3-specific control is available, such as limiting the H3 CDRSet to kinked-only structures. The

kink option is useful if H3 is being sequence-designed, as some mutations in kinked H3s may

make the H3 adopt an extended β-strand-like conformation and vice-versa. In addition, by

default, we disable sequence design of the H3 stem region, which is known to influence the

H3-kink [95,96].

The span of framework residues with AHo numbering 82–89 comprise what is commonly

referred to as the “DE loop” (Chothia residues 66–71 in the light chain and 71–78 in the heavy

chain). These variable residues form a loop physically in contact with CDR1 and are occasion-

ally observed making contacts with antigen [53,84]. In RosettaAntibodyDesign, we denote the

DE loop region as L4 and H4 for the light and heavy chains respectively. The typical κ L4 is dif-

ferent in sequence and conformation than the typical λ L4, so that λ L4s should be used with λ
L1 CDRs and frameworks [84] and κ L4s should be used with κ L1 CDRs and frameworks.

Both loops can be considered CDRs in the application and can be specified just as any other

CDR except for the GraftDesign stage. However, since the conformation of L4 and H4 is largely

conserved among κ, λ, and heavy chain variable domains, and these loops do not usually con-

tact the antigen, we typically do not set them to graft-design and in most cases do not set them

to sequence-design either.
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(2) Grafting a CDR

In order to sample whole structures of CDR conformations from our design database, a way to

graft them onto a given antibody was needed that was quick and accurate enough to minimally

perturb the CDR region without leaving breaks in the structure or non-realistic peptide bond

lengths and angles. Our grafting algorithm (CCDEndsGraftMover) first superimposes three

residues on either end of the CDR to be grafted onto the template framework. Those residues

are then deleted and the Cyclic Coordinate Descent (CCD) algorithm of Canutescu and Dun-

brack [71] is used to attach the CDR to the framework using two residues of the framework

and the first residue of the CDR (on both sides of the CDR), while all other residues are held

fixed. Each closure attempt first perturbs the backbone ϕ and ψ of these residues and the

energy of these residues is minimized after the attempted closure.

A graft is considered closed if the peptide bond C-N distance is less than 1.5 Å and both the

Cα-C-N and C-N-Cα angles are less then 15 degrees away from the ideal min and max values

determined by Berkholz et al. [99] (114.5˚, 119.5˚ and 120˚, 126˚ respectively). If the graft is

not closed after a specific number of cycles, we use the grafting algorithm from the older

Anchored Design Protocol [81] followed by a minimization of the CDR and connecting resi-

dues with tight dihedral constraints on all residues. This protocol is generally much slower and

can result in larger perturbations to the overall structure of the CDR loop relative to the frame-

work, but can close most grafts due to the mobility of the entire insert region. When both ter-

minal ends are closed during the protocol in either algorithm, we continue the design

protocol.

Using this combined grafting algorithm, most CDR grafts can be completed in less than a

second and we accomplish 100% of CDR graft closure while minimally perturbing the internal

CDR structure, if at all. This algorithm is now also used for grafting within the main antibody

application of RosettaAntibody [79], fixing many loop closure imperfections of the original

application.

(3) Sequence design and side-chain optimization

The SeqDesign options control which strategy to use when doing sequence design (primary

strategy), and which strategy to use if the primary strategy cannot be used for that CDR (fall-

back strategy), such as conservative design or no design.

In Rosetta, the optimization of side-chain conformations is referred to as packing (or

repacking). Packing in Rosetta consists of traversing the set of residues to be optimized ran-

domly until no residues are left in the pool and selecting the best rotamer of all rotamers

defined for the given residue [64]. Design is accomplished in the packing algorithm by sam-

pling all rotamers (using the 2010 Dunbrack Rotamer Library [94]) of a specified set of residue

types allowed at a given position.

In general, we use a probability distribution of residue types for each CDR position, embed-

ded in the antibody design database. In the RAbD framework, it is how we sample from the

profile of a given CDR cluster type. Each time packing is applied, a residue type for each posi-

tion is chosen based on distributions from the antibody design database. If this residue is dif-

ferent from the starting residue, it is added to the design types. This process can be performed

repeatedly to increase the sampling according to the distributions. This methodology helps to

maintain the residue profile of a given CDR cluster. This is in use in the Antibody Design

framework by default if enough statistics for that CDR cluster are present.

Alternatively, we use a set of conservative mutations as design types for each specified posi-

tion. The conservative mutations for each residue type are composed of the substitutions for

each residue which score� 0 in one of the BLOSUM matrices [100]. All BLOSUM matrices
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can be used for conservative design, and are specified through the use of a command-line

option. The numbers of the matrix (such as BLOSUM62) indicate the sequence similarity

cutoffs used to derive the BLOSUM matrices, with higher numbers being a more conservative

set of mutations. By default, the conservative mutations from the BLOSUM62 matrix are used

to strike a balance between variability and conservation. This methodology is the default fall-

back sequence design strategy but can be used generally instead of profile-based sequence

design.

By default we disable sequence design for prolines, cysteine residues involved in disulfide

bonds, and the H3 kink-determining stem region (the first 2 and last 3 residues of H3) [95,96]

in order to limit large, unproductive perturbations of the CDR loops from disruptive sequence

changes.

Users may further disallow amino acid types for all positions through a command-line

option, for specific CDRs through the CDR instruction file, and for specific positions through

the use of the Rosetta resfile format. The resfile can also be used to disable specific positions

from design or packing altogether.

Within the protocol, both antibody-antigen interface residues and neighbor residues (Fig

2) that are computed for side-chain packing and design are updated on-the-fly before each

packing/design step. This allows the algorithm to continually adapt to the changing environ-

ment and is accomplished through Rosetta’s graph-based neighbor detection algorithms.

(4) Local energy minimization and application of the inner-loop Monte

Carlo criterion

Following sequence design via repacking (Step 3), the conformations of the grafted CDR, its

neighboring CDRs, and nearby framework residues are optimized. The type of minimization

and which CDRs are minimized as neighbors to other CDRs during the protocol can be speci-

fied through the MinProtocol section of the Instruction File. Many minimization types are

implemented. The default is the standard lbfgs_armijo_nonmonotone minimizer in Rosetta

with a tolerance of 0.001 REU. But other options include the backrub motion protocol

[63,101], and the Relax algorithm, which includes alternating cycles of reducing and then

ramping up the repulsive van der Waals energy term, and at each step performing side-chain

repacking and local dihedral angle space energy minimization.

In order to achieve flexible-backbone design and environmental adaptation of the packing/

design algorithm as described above, we updated the FastRelax algorithm [60] to enable

sequence design during backbone and side-chain optimization. These changes to FastRelax,

which we call RelaxedDesign, were used in the optimization step of Jacobs et al. to general suc-

cess [102]. This is an optional alternative for the minimization step

One further option is in the inner loop is integrated sampling of the antibody-antigen

orientation during design uses the underlying framework and docking algorithms of Rosetta-
Dock [45,103–106]. A ‘dock cycle’ consists of a low-resolution docking step, side-chain re-

packing of the interface residues (defined as residues of the antibody or antigen that are within

the set interface distance of each other (8 Å default), minimization of the rigid body orienta-

tion (the ‘jump’ in Rosetta parlance) between the antigen and the antibody, and a shortened

high-resolution dock consisting of 3 outer cycles and 10 inner cycles as opposed to 4 and 45,

which is used for a full RosettaDock high-resolution run. During high-resolution docking, the

current interface side chains are optimized, while any CDRs or specific residues set to design

are designed. In this way, sequence design and antibody-antigen orientation optimization

are coupled in the same vein as sequence design is accomplished during CDR structural

optimization.
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(5) Application of the outer-loop Monte Carlo criterion

Once a structure exits the inner loop after Ninner cycles (default 1), the structure is then passed

back to the outer loop where the Monte Carlo criterion is applied, comparing the structure

that entered the inner loop and the structure that exited the inner loop. The outer loop

Metropolis Criterion can either be applied on the Total Energy (opt-E) or the Interface Energy

(opt-dG) or some weighted combination of the two. Once Nouter cycles have been completed

(Steps 1–5, default 25), the output design is the structure with the lowest energy observed dur-

ing the simulation.

Computational benchmarking

In order to reduce artifacts, all benchmarking complexes and starting complexes for antibody

design were first minimized into the Rosetta energy function using the Pareto-optimal proto-

col of Nivon et al. [62], which relaxes [60] the starting structure using restraints on the back-

bone and side-chain atoms to strike a balance between deviation from the starting structure

and minimization of the energy. This Pareto-optimal method produces models with all-atom

Root Mean Square Deviations (RMSD) to the starting structures at a mean of 0.176 Å [62]. For

all starting structures, the lowest-energy model of ten decoys was used as the starting structure.

An example command to run this protocol and the flags are given in the Supplemental

Methods.

All antibodies were renumbered into the AHo numbering scheme [107] using PyIgClassify.

The CDRClusterFeature, InterfaceFeature, and AntibodyFeature reporters (Table D, Table E

and Table F in S1 Supporting Information) were used to determine CDR length and cluster

information and physical characteristics of the decoys for benchmarking and design selection.

In general, analysis was done using the Feature Reporters to analyze decoys and create data-

bases with physical data, and the public, open-source Jade repository (https://github.com/

SchiefLab/Jade) was used for benchmarking calculations and selections.

Antibody-protein complexes used for benchmarking consist of 46 κ and 14 λ structures.

These complexes were chosen with the following criteria: 1) resolution� 2.5 Å; 2) interface

surface area of� 700 Å2; 3) CDR1 and CDR2 within 40˚ of one of the cluster centroids in

PyIgClassify (most L3 CDRs were also within 40˚, Table A in S1 Supporting Information); 4)

contacts with the antigen from both the heavy and light-chain CDRs with a preference for con-

tacts of all 6 CDRs; 5) non-redundant such that no two antibodies in the benchmark contacted

the same antigen with overlapping epitopes; 6) a diversity of CDR lengths and clusters.

For each input antibody, we ran a total of 100 simulations, and the best decoy observed dur-

ing each design run was output. The benchmarking was run on a compute cluster in parallel

via MPI. The RunRosettaMPIBenchmarks.py script of the Jade github repository was used to

help launch and configure benchmarks on the cluster (https://github.com/SchiefLab/Jade).

The number of outer cycles for each parallel run was set to 100, so each input antibody under-

went 10,000 total design cycles for each experimental group.

All 5 non-H3 CDRs were allowed to undergo GraftDesign, while all 6 CDRs went through

SequenceDesign. The starting CDR for each non-H3 CDR was removed at the start of the pro-

gram and a random CDR from the CDRSet was grafted onto the starting antibody through the

option–random_start.
To calculate the risk ratios over the entire benchmark, we calculated the percent recovered

and the percent sampled over the 100 decoys for the 60 antibodies in the benchmark. Thus,

the recovery frequency was the number of native clusters observed in the 6000 decoys of the

benchmark for each CDR divided by 6000. Similarly, the sampled frequency was calculated as

the number of native cluster CDRs grafted divided by the total number of grafts for a CDR
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during the 6000 simulations (for each CDR, (100 outer loops) x (1/6 CDRs) x 100 simulations

x 60 antibodies = 100,000). For the antigen risk ratios, the frequencies of recovered CDR

lengths and clusters were calculated for the final decoys from the antigen-present and antigen-

free simulations.

The confidence intervals are calculated as described by Gertsman [108]. If RR = pRecovered/

pSampled then:

CI ¼ exp lnRR� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � pRecoveredÞ
NRecoveredpRecovered

þ
ð1 � pSampledÞ

NSampledpSampled

s !

Similarly, for the antigen risk ratio, if RR = pantigen/pnoantigen, where p represents the frequency

of the native cluster, length, or residue type in the antigen or no-antigen simulations, then

CI ¼ exp lnRR� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � pantigenÞ
Nantigenpantigen

þ
ð1 � pnoantigenÞ
Nnoantigenpnoantigen

s !

Designs for experimental testing of computational antibody design

The starting antibody complex, was obtained from the Protein Data Bank with ID 2J88 [109],

renumbered using PyIgClassify, and minimized into the Rosetta energy function as described

above. To begin design, we used a multiple-strategy approach including with and without

docking and the explicit use of only CDR clusters which have cluster profiles (more than 10

non-redundant members in the database), as well as differential CDR design for both graft-

based and sequence-based design (H2 vs. L1). When designing the L1 loop, we also included a

strategy in which we allowed L4 to undergo sequence design, for a total of 6 antibody design

strategies. The WT L1 or H2 CDR was removed and a random CDR from the database was

grafted in order to start design with the non-native CDR, as well as start with a potentially

higher-energy structure. All CDR structures from the WT 2J88 antibody were left out of the

CDRSet.

For the strategies in which docking was used, automatic epitope SiteConstraints were

enabled to constrain the antibody paratope to the starting epitope. A total of 1000 top decoys

were output as separate Monte Carlo trajectories in parallel for each design strategy using a

compute cluster via MPI, with 100 outer cycles for each parallel run, for a total of 100,000

design rounds per strategy. The RunRosettaMPI Bio-Jade python application was used to aid

the cluster run (https://bio-jade.readthedocs.io/en/latest/). The command to run the applica-

tion, flags, and CDR Instructions are given in the Supplemental Methods.

Decoys were analyzed by the Rosetta Feature reporter framework in the exact same manner

as the benchmarking. The feature databases were then used in the RAbD Jade Antibody

Design GUI in order to sort them for selection (Fig Q in S1 Supporting Information).

For both relaxed and unrelaxed sets of decoys and each antibody design strategy, we sorted

the models according to their computed interface energy (dG) after culling to only the top

10% of the models by total energy (dG_top_p_total), or by the lowest density of unsaturated

hydrogen bonds per interface area (delta_unsats_per_1000_dSASA) [90] for a total of 24

sorted groups (6 design strategies x 2 decoy discrimination methods (relaxed/unrelaxed) x 2

sorting methods).

For the three design strategies where docking was enabled and sorted by unsaturated

hydrogen bond density (3 design strategies x 2 decoy discrimination methods x 1 sorting strat-

egy), the best two models had antibodies that were too far from the native binding site, even

with the use of epitope SiteConstraints. This could be due to not using the constraint energy as

a filter in this case, only to guide the design–i.e., not in the sorting of the total energy. Due to

RosettaAntibodyDesign (RAbD)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006112 April 27, 2018 31 / 38

https://bio-jade.readthedocs.io/en/latest/
https://doi.org/10.1371/journal.pcbi.1006112


this, these 6 groups were left out for a total of 18 groups. The best two models from the sorted,

unrelaxed groups (9 groups, 18 designs) and the best model of the sorted, relaxed groups were

expressed (9 groups, 9 designs) (i.e., chosen with no human intervention). Three other models

of the sorted relaxed groups for L1 design were added to the expression group, as these were

the second-best scoring models of the L1 relaxed groups, for a total of 30 antibodies selected

for expression. Sequences were obtained from the decoys and processed for inclusion into the

expression vector sequences using the get_seq application of Jade.

The starting antibody complex was obtained from the Protein Data Bank with ID 4JAN

[82], renumbered using PyIgClassify, and minimized into the Rosetta energy function as

described above. A total of four antibody design strategies were used where either H2 or L1

+L3 were designed and the CDRSet included only clusters with enough data to use profiles.

250 top decoys were output for parallel Monte Carlo trajectories in parallel for each antibody

design strategy with the outer cycle rounds set to 200, for a total of 50, 000 design cycles per

design strategy. Commands, flags, and CDR Instructions are given in the Supplemental

Methods.

Decoys were analyzed with both the RosettaFeature reporters and physical data and sorted

as described for 2J88. In addition to sorting by the top dG of the top 10% of total energy

(dG_top_Ptotal) and density of unsaturated hydrogen bonds per interface area (delta_unsat-
s_per_1000_dSASA), we sorted by the Lawrence and Colman Shape Complementarity score

[110] (sc_value) through the Jade RAbD GUI. Sorts were done for both relaxed and nonrelaxed

decoys to aid in decoy discrimination. The sorts were done for individual antibody design

strategies and all combined for a total of 28 sorted groups. Jade was used to output PyMol ses-

sions of each group. The top 10 designs from each group were visually analyzed in PyMol and

27 designs were selected based on physical characteristics such as good shape complementar-

ity, hydrogen bonding, interface, and total energies, as well as cluster and sequence redun-

dancy in the designs. Generally, the top design selected from each sort was expressed, unless it

was redundant or the structure held some abnormality, such as bad shape complementarity.

Sequences were obtained from the decoys and processed for inclusion into the expression vec-

tor sequences using the get_seq application of Jade.

Availability

RosettaAntibodyDesign is distributed with the Rosetta Software Suite (www.rosettacommons.

org) and is included with Rosetta versions starting at 3.8. All RosettaAntibodyDesign frame-

work classes are available for scripting within the RosettaScripts framework [97], including the

main application. The public Rosetta distribution includes a database of the original North-

Lehmann-Dunbrack clustering data [53]. Up-to-date antibody design databases for use with

RosettaAntibodyDesign can be obtained from PyIgClassify (http://dunbrack2.fccc.edu/

pyigclassify). Documentation on the use of RosettaAntibodyDesign, including instructions for

installing an up-to-date PyIgClassify database, can be found with the RosettaCommons

documentation:

https://www.rosettacommons.org/docs/latest/application_documentation/antibody/

RosettaAntibodyDesign.

Bio-Jade is an open-source python package, with scripts and modules created specifically

for RAbD (https://bio-jade.readthedocs.io/en/latest/).

Supporting information

S1 Text. This file contains supplementary text describing the methods and consists of the fol-

lowing 4 sections:
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1. Rosetta Commands
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4. Antibody Feature Analysis

(PDF)
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